List of publications

Some preprints of articles currently in review:

  • S. Lehtola and M. A. L. Marques, Many recent density functionals are numerically unstable, arXiv:2206.14062
  • S. Pathak, J. A. Rackers, I. E. López, R. L. Fernández, A. J. Lee, W. P. Bricker, and S. Lehtola, Accurate Hellmann-Feynman forces with optimized atom-centered Gaussian basis sets, arXiv:2207.03587

Here is a list of my peer-reviewed scientific publications in inverse chronological order. Note that the first five (last on the list) are under my ex first name.

  1. V.-T. Salo, R. Valiev, S. Lehtola, and T. Kurtén, Gas-phase peroxyl radical recombination reactions: a computational study of formation and decomposition of tetroxides, J. Phys. Chem. A 126, 4046 (2022). doi:10.1021/acs.jpca.2c01321
  2. S. Lehtola and A. Karttunen, Free and open source software for computational chemistry education, Wiley Interdiscip. Rev. Comput. Mol. Sci., e1610 (2022). doi:10.1002/wcms.1610 chemRxiv:2021-hr1r0-v3 open access
  3. M. F. Kasim, S. Lehtola, and S. M. Vinko, DQC: a Python program package for Differentiable Quantum Chemistry, J. Chem. Phys. 156, 084801 (2022). doi:10.1063/5.0076202 arXiv:2110.11678 open access
  4. K. Trepte, S. Schwalbe, S. Liebing, W. T. Schulze, J. Kortus, H. Myneni, A. V. Ivanov, and S. Lehtola, Chemical bonding theories as guides for self-interaction corrected solutions: multiple local minima and symmetry breaking, J. Chem. Phys. 155, 224109 (2021). doi:10.1063/5.0071796 arXiv:2109.08199 open access
  5. S. Lehtola, Straightforward and accurate automatic auxiliary basis set generation for molecular calculations with atomic orbital basis sets, J. Chem. Theory Comput. 17, 6886 (2021). doi:10.1021/acs.jctc.1c00607 arXiv:2106.11081
  6. E. Epifanovsky el al., Software for the frontiers of quantum chemistry: An overview of developments in the Q-Chem 5 package, J. Chem. Phys. 155, 084801 (2021). doi:10.1063/5.0055522 open access
  7. G. Bilalbegović, A. Maksimović, L. A. Valencic, and S. Lehtola, Sulfur molecules in space by X-rays: a computational study, ACS Earth Space Chem. 5, 436 (2021). doi:10.1021/acsearthspacechem.0c00238 open access
  8. R. K. Jinger, H. Fliegl, R. Bast, M. Dimitrova, S. Lehtola, and D. Sundholm, Spatial contributions to nuclear magnetic shieldings, J. Phys. Chem. A 125, 1778 (2021). doi:10.1021/acs.jpca.0c10884 arXiv:2012.03048 open access
  9. S. Lehtola, M. Dimitrova, H. Fliegl, and D. Sundholm, Benchmarking magnetizabilities with recent density functionals, J. Chem. Theory Comput. 17, 1457 (2021). doi:10.1021/acs.jctc.0c01190 arXiv:2011.06560 open access Erratum
  10. S. Lehtola and M. A. L. Marques, Meta-local density functionals: a new rung on Jacob’s ladder, J. Chem. Theory Comput. 17, 943 (2021). doi:10.1021/acs.jctc.0c01147. arXiv:2006.16835 open access
  11. S. Schwalbe, L. Fiedler, J. Kraus, J. Kortus, K. Trepte, and S. Lehtola, PyFLOSIC: Python-based Fermi-Löwdin orbital self-interaction correction, J. Chem. Phys. 153, 084104 (2020). doi:10.1063/5.0012519. arXiv:1905.02631
  12. Q. Sun, X. Zhang, S. Banerjee, P. Bao, M. Barbry, N. S. Blunt, N. A. Bogdanov, G. H. Booth, J. Chen, Z.-H. Cui, J. J. Eriksen, Y. Gao, S. Guo, J. Hermann, M. R. Hermes, K. Koh, P. Koval, S. Lehtola, Z. Li, J. Liu, N. Mardirossian, J. D. McClain, M. Motta, B. Mussard, H. Q. Pham, A. Pulkin, W. Purwanto, P. J. Robinson, E. Ronca, E. Sayfutyarova, M. Scheurer, H. F. Schurkus, J. E. T. Smith, C. Sun, S.-N. Sun, S. Upadhyay, L. K. Wagner, X. Wang, A. White, J. D. Whitfield, M. J. Williamson, S. Wouters, J. Yang, J. M. Yu, T. Zhu, T. C. Berkelbach, S. Sharma, A. Sokolov, and G. K.-L. Chan, Recent developments in the PySCF program package, J. Chem. Phys. 153, 024109 (2020). doi:10.1063/5.0006074. arXiv:2002.12531
  13. D. G. A. Smith, L. A. Burns, A. C. Simmonett, R. M. Parrish, M. C. Schieber, R. Galvelis, P. Kraus, H. Kruse, R. Di Remigio, A. Alenaizan, A. M. James, S. Lehtola, J. P. Misiewicz, M. Scheurer, R. A. Shaw, J. B. Schriber, Y. Xie, Z. L. Glick, D. A. Sirianni, J. S. O’Brien, J. M. Waldrop, A. Kumar, E. G. Hohenstein, B. P. Pritchard, B. R. Brooks, H. F. Schaefer III, A. Yu. Sokolov, K. Patkowski, A. E. DePrince III, U. Bozkaya, R. A. King, F. A. Evangelista, J. M. Turney, T. D. Crawford, and C. D. Sherrill, Psi4 1.4: Open-Source Software for High-Throughput Quantum Chemistry, J. Chem. Phys. 152, 184108 (2020). doi:10.1063/5.0006002 chemrXiv:11930031
  14. S. Lehtola, L. Visscher, and E. Engel, Efficient implementation of the superposition of atomic potentials initial guess for electronic structure calculations in Gaussian basis sets, J. Chem. Phys. 152, 144105 (2020). doi:10.1063/5.0004046 arXiv:2002.02587
  15. S. Lehtola, Polarized Gaussian basis sets from one-electron ions, J. Chem. Phys. 152, 134108 (2020). doi:10.1063/1.5144964 arXiv:2001.04224
  16. D. S. Levine, D. Hait, N. M. Tubman, S. Lehtola, K. B. Whaley, and M. Head-Gordon, CASSCF with extremely large active spaces using the adaptive sampling configuration interaction method, J. Chem. Theory Comput. 16, 2340 (2020). doi:10.1021/acs.jctc.9b01255 arXiv:1912.08379
  17. S. Lehtola, F. Blockhuys, and C. Van Alsenoy, An overview of self-consistent field calculations within finite basis sets, Molecules 25, 1218 (2020). doi:10.3390/molecules25051218 arXiv:1912.12029 open access
  18. S. Lehtola, Accurate reproduction of strongly repulsive interatomic potentials, Phys. Rev. A 101, 032504 (2020). doi:10.1103/PhysRevA.101.032504 arXiv:1912.12624
  19. S. Lehtola, Fully numerical calculations on atoms with fractional occupations and range-separated exchange functionals, Phys. Rev. A 101, 012516 (2020). doi:10.1103/PhysRevA.101.012516 arXiv:1908.02528
  20. S. Lehtola, Curing basis set overcompleteness with pivoted Cholesky decompositions, J. Chem. Phys. 151, 241102 (2019). doi:10.1063/1.5139948 arXiv:1911.10372
  21. S. Lehtola, A review on non-relativistic fully numerical electronic structure calculations on atoms and diatomic molecules, Int. J. Quantum Chem. 119, e25968 (2019). doi:10.1002/qua.25968 arXiv:1902.01431 open access
  22. C. Shahi, P. Bhattarai, K. Wagle, B. Santra, S. Schwalbe, T. Hahn, J. Kortus, K. A. Jackson, J. E. Peralta, K. Trepte, S. Lehtola, N. K. Nepal, H. Myneni, B. Neupane, S. Adhikari, A. Ruzsinszky, Y. Yamamoto, T. Baruah, R. R. Zope, and J. P. Perdew, Stretched or noded orbital densities and self-interaction correction in density functional theory, J. Chem. Phys. 150, 174102 (2019). doi:10.1063/1.5087065 arXiv:1903.00611
  23. S. Lehtola, M. Dimitrova, and D. Sundholm, Fully numerical electronic structure calculations on diatomic molecules in weak to strong magnetic fields, Mol. Phys. 118, e1597989 (2020), doi:10.1080/00268976.2019.1597989 arXiv:1812.06274
  24. S. Lehtola, Fully numerical Hartree–Fock and density functional calculations. II. Diatomic molecules, Int. J. Quantum Chem. 119, e25944 (2019). doi:10.1002/qua.25944 arXiv:1810.11653
  25. S. Lehtola, Fully numerical Hartree–Fock and density functional calculations. I. Atoms, Int. J. Quantum Chem. 119, e25945 (2019). doi:10.1002/qua.25945 arXiv:1810.11651
  26. S. Lehtola, Assessment of initial guesses for self-consistent field calculations. Superposition of Atomic Potentials: simple yet efficient, J. Chem. Theory Comput. 15, 1593 (2019). doi:10.1021/acs.jctc.8b01089. arXiv:1810.11659 open access
  27. S. Lehtola, C. Steigemann, M. J. T. Oliveira, and M. A. L. Marques, Recent developments in LIBXC — a comprehensive library of functionals for density functional theory, SoftwareX 7, 1 (2018). doi:10.1016/j.softx.2017.11.002 open access
  28. S. Lehtola, N. M. Tubman, K. B. Whaley, and M. Head-Gordon, Cluster decomposition of full configuration interaction wave functions: a tool for chemical interpretation of systems with strong correlation, J. Chem. Phys. 147, 154105 (2017). doi:10.1063/1.4996044 arXiv:1707.04376
  29. S. Lehtola, J. Parkhill, and M. Head-Gordon, Orbital optimization in the perfect pairing hierarchy. Applications to full-valence calculations on linear polyacenes, Mol. Phys. 116, 547 (2018), doi:10.1080/00268976.2017.1342009 arXiv:1705.01678
  30. E. Ö. Jónsson, S. Lehtola, M. Puska, and H. Jónsson, Theory and applications of generalized Pipek–Mezey Wannier functions, J. Chem. Theory Comput. 13, 460 (2017). doi:10.1021/acs.jctc.6b00809 arXiv:1608.06396
  31. S. Lehtola, J. Parkhill, and M. Head-Gordon, Cost-effective description of strong correlation: efficient implementations of the perfect quadruples and perfect hextuples models, J. Chem. Phys. 145, 134110 (2016). doi:10.1063/1.4964317 arXiv:1609.00077
  32. S. Lehtola, E. Ö. Jónsson, and H. Jónsson, The effect of complex-valued optimal orbitals on atomization energies with the Perdew–Zunger self-interaction correction to density functional theory, J. Chem. Theory Comput. 12, 4296 (2016). doi:10.1021/acs.jctc.6b00622 Computational Chemistry Highlight
  33. S. Lehtola, M. Head-Gordon, and H. Jónsson, Complex orbitals, multiple local minima and symmetry breaking in Perdew–Zunger self-interaction corrected density-functional theory calculations, J. Chem. Theory Comput. 12, 3195 (2016). doi:10.1021/acs.jctc.6b00347
  34. E. Ö. Jónsson, S. Lehtola, and H. Jónsson, Towards an optimal gradient-dependent energy functional of the PZ-SIC form, Proc. Comput. Sci 51, 1858 (2015). doi:10.1016/j.procs.2015.05.417
  35. J. Niskanen, C. Sahle, I. Juurinen, J. Koskelo, S. Lehtola, R. Verbeni, H. Müller, M. Hakala, and S. Huotari, Protonation dynamics and hydrogen bonding in aqueuos sulfuric acid, J. Phys. Chem. B 119, 11732 (2015). doi:10.1021/acs.jpcb.5b04371
  36. T. P. Rossi, S. Lehtola, A. Sakko, M. J. Puska, and R. M. Nieminen, Nanoplasmonics simulations at the basis set limit through completeness-optimized, local numerical basis sets, J. Chem. Phys. 142, 094114 (2015). doi:10.1063/1.4913739
  37. S. Lehtola, Automatic algorithms for completeness-optimization of Gaussian basis sets, J. Comput. Chem. 36, 335 (2015). doi:10.1002/jcc.23802
  38. J. Koskelo, I. Juurinen, K. Ruotsalainen, M. McGrath, I.-F. Kuo, S. Lehtola, S. Galambosi, K. Hämäläinen, S. Huotari, and M. Hakala, Intra- and intermolecular effects on the Compton profile of the ionic liquid 1,3-dimethylimidazolium chloride, J. Chem. Phys. 141, 244505 (2014). doi:10.1063/1.4904278
  39. S. Lehtola and H. Jónsson, Variational, self-consistent implementation of the Perdew–Zunger self-interaction correction with complex optimal orbitals, J. Chem. Theory Comput. 10, 5324 (2014). doi:10.1021/ct500637x Erratum I Erratum II
  40. S. Lehtola and H. Jónsson, Pipek–Mezey orbital localization using various partial charge estimates, J. Chem. Theory Comput. 10, 642 (2014). doi:10.1021/ct401016x
  41. S. Lehtola and H. Jónsson, Unitary optimization of localized molecular orbitals, J. Chem. Theory Comput. 9, 5365 (2013). doi:10.1021/ct400793q
  42. C. J. Sahle, C. Sternemann, C. Schmidt, S. Lehtola, S. Jahn, L. Simonelli, S. Huotari, M. Hakala, T. Pylkkänen, A. Nyrow, K. Mende, M. Tolan, K. Hämäläinen, and M. Wilke, Microscopic structure of water at elevated pressures and temperatures, Proc. Nat. Acad. Sciences 110, 6301 (2013). doi:10.1073/pnas.1220301110
  43. S. Lehtola, P. Manninen, M. Hakala, and K. Hämäläinen, Contraction of completeness-optimized basis sets. Application to ground-state electron momentum densities, J. Chem. Phys. 138, 044109 (2013). doi:10.1063/1.4788635
  44. J. Lehtola, P. Manninen, M. Hakala, and K. Hämäläinen, Completeness-optimized basis sets. Application to ground-state electron momentum densities, J. Chem. Phys. 137, 104105 (2012). doi:10.1063/1.4749272
  45. J. Lehtola, M. Hakala, A. Sakko, and K. Hämäläinen, ERKALE — a flexible program package for x-ray properties of atoms and molecules, J. Comput. Chem. 33, 1572 (2012). doi:10.1002/jcc.22987
  46. J. Lehtola, M. Hakala, J. Vaara, and K. Hämäläinen, Calculation of isotropic Compton profiles with Gaussian basis sets, Phys. Chem. Chem. Phys. 13, 5630 (2011). doi:10.1039/C0CP02269A
  47. T. Pylkkänen, J. Lehtola, M. Hakala, A. Sakko, G. Monaco, S. Huotari, and K. Hämäläinen, Universal signature of hydrogen bonding in the oxygen K-edge spectrum of alcohols, J. Phys. Chem. B 114, 13076 (2010). doi:10.1021/jp106479a
  48. J. Lehtola, M. Hakala, and K. Hämäläinen, Structure of liquid linear alcohols, J. Phys. Chem. B 114, 6426 (2010). doi:10.1021/jp909894y

My PhD thesis can be found here: Computational modeling of the electron momentum density.