List of publications

Cover graphics by Jyrki Hokkanen, CSC - IT Center for Science Ltd.

Some preprints of articles currently in review:

Here is a list of my peer-reviewed scientific publications in inverse chronological order. Note that the first five (last on the list) are under my ex first name.

  1. S. Lehtola, Importance profiles. Visualization of atomic basis set requirements, Electron. Struct. 6, 015015 (2024). doi:10.1088/2516-1075/ad31ca arXiv:2309.14844 open access
  2. H. Åström and S. Lehtola, Insight on Gaussian basis set truncation errors in weak to intermediate magnetic fields with an approximate Hamiltonian, J. Phys. Chem. A 127, 10872 (2023). doi:10.1021/acs.jpca.3c04531 arXiv:2307.02635 open access
  3. C. J. Schattenberg, A. Wodyński, H. Åström, D. Sundholm, M. Kaupp, and S. Lehtola, Revisiting gauge-independent kinetic energy densities in meta-GGAs and local hybrid calculations of magnetizabilities, J. Phys. Chem. A 127, 10896 (2023). doi:10.1021/acs.jpca.3c06244 arXiv:2306.13407 open access
  4. S. Lehtola, A call to arms: making the case for more reusable libraries, J. Chem. Phys. 159, 180901 (2023). doi:10.1063/5.0175165 arXiv:2309.02433
  5. T. B. Pedersen, S. Lehtola, I. F. Galván, and R. Lindh, The versatility of the Cholesky decomposition in electronic structure theory, Wiley Interdiscip. Rev. Comput. Mol. Sci. 14, e1962 (2023). doi:10.1002/wcms.1692 chemRxiv:2023-579sk-v4 open access
  6. S. Lehtola and M. A. L. Marques, Reproducibility of density functional approximations: how new functionals should be reported, J. Chem. Phys. 159, 114116 (2023). doi:10.1063/5.0167763 arXiv:2307.07474
  7. S. Lehtola, Automatic generation of accurate and cost-efficient auxiliary basis sets, J. Chem. Theory Comput. 19, 6242 (2023). doi:10.1021/acs.jctc.3c00670 arXiv:2306.11039 open access
  8. S. Lehtola, Accuracy of a recent regularized nuclear potential. J. Chem. Theory Comput. 19, 4033 (2023). doi:10.1021/acs.jctc.3c00530 arXiv:2302.09557 open access
  9. G. Li Manni et al., The OpenMolcas Web: a community-driven approach to advancing computational chemistry. J. Chem. Theory Comput. 19, 6933 (2023). doi:10.1021/acs.jctc.3c00182 chemRxiv:2023-b7f0j open access
  10. S. Lehtola, Atomic electronic structure calculations with Hermite interpolating polynomials. J. Phys. Chem. A 127, 4180 (2023). doi:10.1021/acs.jpca.3c00729 arXiv:2302.00440 open access
  11. S. Lehtola, Meta-GGA density functional calculations on atoms with spherically symmetric densities in the finite element formalism, J. Chem. Theory Comput. 19, 2502 (2023). doi:10.1021/acs.jctc.3c00183 arXiv:2302.06284 open access
  12. S. Pathak, I. E. López, A. J. Lee, W. P. Bricker, R. L. Fernández, S. Lehtola and J. A. Rackers, Accurate Hellmann–Feynman forces from density functional calculations with augmented Gaussian basis sets, J. Chem. Phys. 158, 014104 (2023). doi:10.1063/5.0130668 arXiv:2207.03587
  13. S. Lehtola and M. A. L. Marques, Many recent density functionals are numerically ill-behaved, J. Chem. Phys. 157, 174114 (2022). doi:10.1063/5.0121187 arXiv:2206.14062
  14. S. Schwalbe, K. Trepte, and S. Lehtola, How good are recent density functionals for ground and excited states of one-electron systems?, J. Chem. Phys. 157, 174113 (2022). doi:10.1063/5.0120515 arXiv:2208.06482 open access
  15. V.-T. Salo, R. Valiev, S. Lehtola, and T. Kurtén, Gas-phase peroxyl radical recombination reactions: a computational study of formation and decomposition of tetroxides, J. Phys. Chem. A 126, 4046 (2022). doi:10.1021/acs.jpca.2c01321
  16. S. Lehtola and A. Karttunen, Free and open source software for computational chemistry education, Wiley Interdiscip. Rev. Comput. Mol. Sci. 12, e1610 (2022). doi:10.1002/wcms.1610 chemRxiv:2021-hr1r0-v3 open access (top downloaded article in 2022)
  17. M. F. Kasim, S. Lehtola, and S. M. Vinko, DQC: a Python program package for Differentiable Quantum Chemistry, J. Chem. Phys. 156, 084801 (2022). doi:10.1063/5.0076202 arXiv:2110.11678 open access
  18. K. Trepte, S. Schwalbe, S. Liebing, W. T. Schulze, J. Kortus, H. Myneni, A. V. Ivanov, and S. Lehtola, Chemical bonding theories as guides for self-interaction corrected solutions: multiple local minima and symmetry breaking, J. Chem. Phys. 155, 224109 (2021). doi:10.1063/5.0071796 arXiv:2109.08199 open access
  19. S. Lehtola, Straightforward and accurate automatic auxiliary basis set generation for molecular calculations with atomic orbital basis sets, J. Chem. Theory Comput. 17, 6886 (2021). doi:10.1021/acs.jctc.1c00607 arXiv:2106.11081
  20. E. Epifanovsky et al., Software for the frontiers of quantum chemistry: An overview of developments in the Q-Chem 5 package, J. Chem. Phys. 155, 084801 (2021). doi:10.1063/5.0055522 open access
  21. G. Bilalbegović, A. Maksimović, L. A. Valencic, and S. Lehtola, Sulfur molecules in space by X-rays: a computational study, ACS Earth Space Chem. 5, 436 (2021). doi:10.1021/acsearthspacechem.0c00238 open access
  22. R. K. Jinger, H. Fliegl, R. Bast, M. Dimitrova, S. Lehtola, and D. Sundholm, Spatial contributions to nuclear magnetic shieldings, J. Phys. Chem. A 125, 1778 (2021). doi:10.1021/acs.jpca.0c10884 arXiv:2012.03048 open access
  23. S. Lehtola, M. Dimitrova, H. Fliegl, and D. Sundholm, Benchmarking magnetizabilities with recent density functionals, J. Chem. Theory Comput. 17, 1457 (2021). doi:10.1021/acs.jctc.0c01190 arXiv:2011.06560 open access Erratum
  24. S. Lehtola and M. A. L. Marques, Meta-local density functionals: a new rung on Jacob’s ladder, J. Chem. Theory Comput. 17, 943 (2021). doi:10.1021/acs.jctc.0c01147. arXiv:2006.16835 open access
  25. S. Schwalbe, L. Fiedler, J. Kraus, J. Kortus, K. Trepte, and S. Lehtola, PyFLOSIC: Python-based Fermi–Löwdin orbital self-interaction correction, J. Chem. Phys. 153, 084104 (2020). doi:10.1063/5.0012519. arXiv:1905.02631
  26. Q. Sun, X. Zhang, S. Banerjee, P. Bao, M. Barbry, N. S. Blunt, N. A. Bogdanov, G. H. Booth, J. Chen, Z.-H. Cui, J. J. Eriksen, Y. Gao, S. Guo, J. Hermann, M. R. Hermes, K. Koh, P. Koval, S. Lehtola, Z. Li, J. Liu, N. Mardirossian, J. D. McClain, M. Motta, B. Mussard, H. Q. Pham, A. Pulkin, W. Purwanto, P. J. Robinson, E. Ronca, E. Sayfutyarova, M. Scheurer, H. F. Schurkus, J. E. T. Smith, C. Sun, S.-N. Sun, S. Upadhyay, L. K. Wagner, X. Wang, A. White, J. D. Whitfield, M. J. Williamson, S. Wouters, J. Yang, J. M. Yu, T. Zhu, T. C. Berkelbach, S. Sharma, A. Sokolov, and G. K.-L. Chan, Recent developments in the PySCF program package, J. Chem. Phys. 153, 024109 (2020). doi:10.1063/5.0006074. arXiv:2002.12531
  27. D. G. A. Smith, L. A. Burns, A. C. Simmonett, R. M. Parrish, M. C. Schieber, R. Galvelis, P. Kraus, H. Kruse, R. Di Remigio, A. Alenaizan, A. M. James, S. Lehtola, J. P. Misiewicz, M. Scheurer, R. A. Shaw, J. B. Schriber, Y. Xie, Z. L. Glick, D. A. Sirianni, J. S. O’Brien, J. M. Waldrop, A. Kumar, E. G. Hohenstein, B. P. Pritchard, B. R. Brooks, H. F. Schaefer III, A. Yu. Sokolov, K. Patkowski, A. E. DePrince III, U. Bozkaya, R. A. King, F. A. Evangelista, J. M. Turney, T. D. Crawford, and C. D. Sherrill, Psi4 1.4: Open-Source Software for High-Throughput Quantum Chemistry, J. Chem. Phys. 152, 184108 (2020). doi:10.1063/5.0006002 chemrXiv:11930031
  28. S. Lehtola, L. Visscher, and E. Engel, Efficient implementation of the superposition of atomic potentials initial guess for electronic structure calculations in Gaussian basis sets, J. Chem. Phys. 152, 144105 (2020). doi:10.1063/5.0004046 arXiv:2002.02587
  29. S. Lehtola, Polarized Gaussian basis sets from one-electron ions, J. Chem. Phys. 152, 134108 (2020). doi:10.1063/1.5144964 arXiv:2001.04224
  30. D. S. Levine, D. Hait, N. M. Tubman, S. Lehtola, K. B. Whaley, and M. Head-Gordon, CASSCF with extremely large active spaces using the adaptive sampling configuration interaction method, J. Chem. Theory Comput. 16, 2340 (2020). doi:10.1021/acs.jctc.9b01255 arXiv:1912.08379
  31. S. Lehtola, F. Blockhuys, and C. Van Alsenoy, An overview of self-consistent field calculations within finite basis sets, Molecules 25, 1218 (2020). doi:10.3390/molecules25051218 arXiv:1912.12029 open access
  32. S. Lehtola, Accurate reproduction of strongly repulsive interatomic potentials, Phys. Rev. A 101, 032504 (2020). doi:10.1103/PhysRevA.101.032504 arXiv:1912.12624
  33. S. Lehtola, Fully numerical calculations on atoms with fractional occupations and range-separated exchange functionals, Phys. Rev. A 101, 012516 (2020). doi:10.1103/PhysRevA.101.012516 arXiv:1908.02528
  34. S. Lehtola, Curing basis set overcompleteness with pivoted Cholesky decompositions, J. Chem. Phys. 151, 241102 (2019). doi:10.1063/1.5139948 arXiv:1911.10372
  35. S. Lehtola, A review on non-relativistic fully numerical electronic structure calculations on atoms and diatomic molecules, Int. J. Quantum Chem. 119, e25968 (2019). doi:10.1002/qua.25968 arXiv:1902.01431 open access, cover feature
  36. C. Shahi, P. Bhattarai, K. Wagle, B. Santra, S. Schwalbe, T. Hahn, J. Kortus, K. A. Jackson, J. E. Peralta, K. Trepte, S. Lehtola, N. K. Nepal, H. Myneni, B. Neupane, S. Adhikari, A. Ruzsinszky, Y. Yamamoto, T. Baruah, R. R. Zope, and J. P. Perdew, Stretched or noded orbital densities and self-interaction correction in density functional theory, J. Chem. Phys. 150, 174102 (2019). doi:10.1063/1.5087065 arXiv:1903.00611
  37. S. Lehtola, M. Dimitrova, and D. Sundholm, Fully numerical electronic structure calculations on diatomic molecules in weak to strong magnetic fields, Mol. Phys. 118, e1597989 (2020), doi:10.1080/00268976.2019.1597989 arXiv:1812.06274
  38. S. Lehtola, Fully numerical Hartree–Fock and density functional calculations. II. Diatomic molecules, Int. J. Quantum Chem. 119, e25944 (2019). doi:10.1002/qua.25944 arXiv:1810.11653, cover feature
  39. S. Lehtola, Fully numerical Hartree–Fock and density functional calculations. I. Atoms, Int. J. Quantum Chem. 119, e25945 (2019). doi:10.1002/qua.25945 arXiv:1810.11651, cover feature
  40. S. Lehtola, Assessment of initial guesses for self-consistent field calculations. Superposition of Atomic Potentials: simple yet efficient, J. Chem. Theory Comput. 15, 1593 (2019). doi:10.1021/acs.jctc.8b01089. arXiv:1810.11659 open access
  41. S. Lehtola, C. Steigemann, M. J. T. Oliveira, and M. A. L. Marques, Recent developments in LIBXC — a comprehensive library of functionals for density functional theory, SoftwareX 7, 1 (2018). doi:10.1016/j.softx.2017.11.002 open access
  42. S. Lehtola, N. M. Tubman, K. B. Whaley, and M. Head-Gordon, Cluster decomposition of full configuration interaction wave functions: a tool for chemical interpretation of systems with strong correlation, J. Chem. Phys. 147, 154105 (2017). doi:10.1063/1.4996044 arXiv:1707.04376
  43. S. Lehtola, J. Parkhill, and M. Head-Gordon, Orbital optimization in the perfect pairing hierarchy. Applications to full-valence calculations on linear polyacenes, Mol. Phys. 116, 547 (2018), doi:10.1080/00268976.2017.1342009 arXiv:1705.01678
  44. E. Ö. Jónsson, S. Lehtola, M. Puska, and H. Jónsson, Theory and applications of generalized Pipek–Mezey Wannier functions, J. Chem. Theory Comput. 13, 460 (2017). doi:10.1021/acs.jctc.6b00809 arXiv:1608.06396
  45. S. Lehtola, J. Parkhill, and M. Head-Gordon, Cost-effective description of strong correlation: efficient implementations of the perfect quadruples and perfect hextuples models, J. Chem. Phys. 145, 134110 (2016). doi:10.1063/1.4964317 arXiv:1609.00077
  46. S. Lehtola, E. Ö. Jónsson, and H. Jónsson, The effect of complex-valued optimal orbitals on atomization energies with the Perdew–Zunger self-interaction correction to density functional theory, J. Chem. Theory Comput. 12, 4296 (2016). doi:10.1021/acs.jctc.6b00622 Computational Chemistry Highlight
  47. S. Lehtola, M. Head-Gordon, and H. Jónsson, Complex orbitals, multiple local minima and symmetry breaking in Perdew–Zunger self-interaction corrected density-functional theory calculations, J. Chem. Theory Comput. 12, 3195 (2016). doi:10.1021/acs.jctc.6b00347
  48. E. Ö. Jónsson, S. Lehtola, and H. Jónsson, Towards an optimal gradient-dependent energy functional of the PZ-SIC form, Proc. Comput. Sci 51, 1858 (2015). doi:10.1016/j.procs.2015.05.417
  49. J. Niskanen, C. Sahle, I. Juurinen, J. Koskelo, S. Lehtola, R. Verbeni, H. Müller, M. Hakala, and S. Huotari, Protonation dynamics and hydrogen bonding in aqueuos sulfuric acid, J. Phys. Chem. B 119, 11732 (2015). doi:10.1021/acs.jpcb.5b04371
  50. T. P. Rossi, S. Lehtola, A. Sakko, M. J. Puska, and R. M. Nieminen, Nanoplasmonics simulations at the basis set limit through completeness-optimized, local numerical basis sets, J. Chem. Phys. 142, 094114 (2015). doi:10.1063/1.4913739
  51. S. Lehtola, Automatic algorithms for completeness-optimization of Gaussian basis sets, J. Comput. Chem. 36, 335 (2015). doi:10.1002/jcc.23802
  52. J. Koskelo, I. Juurinen, K. Ruotsalainen, M. McGrath, I.-F. Kuo, S. Lehtola, S. Galambosi, K. Hämäläinen, S. Huotari, and M. Hakala, Intra- and intermolecular effects on the Compton profile of the ionic liquid 1,3-dimethylimidazolium chloride, J. Chem. Phys. 141, 244505 (2014). doi:10.1063/1.4904278
  53. S. Lehtola and H. Jónsson, Variational, self-consistent implementation of the Perdew–Zunger self-interaction correction with complex optimal orbitals, J. Chem. Theory Comput. 10, 5324 (2014). doi:10.1021/ct500637x Erratum I Erratum II
  54. S. Lehtola and H. Jónsson, Pipek–Mezey orbital localization using various partial charge estimates, J. Chem. Theory Comput. 10, 642 (2014). doi:10.1021/ct401016x
  55. S. Lehtola and H. Jónsson, Unitary optimization of localized molecular orbitals, J. Chem. Theory Comput. 9, 5365 (2013). doi:10.1021/ct400793q
  56. C. J. Sahle, C. Sternemann, C. Schmidt, S. Lehtola, S. Jahn, L. Simonelli, S. Huotari, M. Hakala, T. Pylkkänen, A. Nyrow, K. Mende, M. Tolan, K. Hämäläinen, and M. Wilke, Microscopic structure of water at elevated pressures and temperatures, Proc. Nat. Acad. Sciences 110, 6301 (2013). doi:10.1073/pnas.1220301110
  57. S. Lehtola, P. Manninen, M. Hakala, and K. Hämäläinen, Contraction of completeness-optimized basis sets. Application to ground-state electron momentum densities, J. Chem. Phys. 138, 044109 (2013). doi:10.1063/1.4788635
  58. J. Lehtola, P. Manninen, M. Hakala, and K. Hämäläinen, Completeness-optimized basis sets. Application to ground-state electron momentum densities, J. Chem. Phys. 137, 104105 (2012). doi:10.1063/1.4749272
  59. J. Lehtola, M. Hakala, A. Sakko, and K. Hämäläinen, ERKALE — a flexible program package for x-ray properties of atoms and molecules, J. Comput. Chem. 33, 1572 (2012). doi:10.1002/jcc.22987
  60. J. Lehtola, M. Hakala, J. Vaara, and K. Hämäläinen, Calculation of isotropic Compton profiles with Gaussian basis sets, Phys. Chem. Chem. Phys. 13, 5630 (2011). doi:10.1039/C0CP02269A cover article
  61. T. Pylkkänen, J. Lehtola, M. Hakala, A. Sakko, G. Monaco, S. Huotari, and K. Hämäläinen, Universal signature of hydrogen bonding in the oxygen K-edge spectrum of alcohols, J. Phys. Chem. B 114, 13076 (2010). doi:10.1021/jp106479a
  62. J. Lehtola, M. Hakala, and K. Hämäläinen, Structure of liquid linear alcohols, J. Phys. Chem. B 114, 6426 (2010). doi:10.1021/jp909894y

My PhD thesis can be found here: Computational modeling of the electron momentum density.