List of publications

Cover graphics by Monica Lindholm, and Jyrki Hokkanen (CSC - IT Center for Science Ltd).

Some preprints of articles currently in review:

  • U. Ahmed, M. P. Johansson, S. Lehtola, and D. Sundholm, Density functional benchmark for quadruple hydrogen bonds, arXiv:2503.02423
  • L. Nikkanen, F. Pavošević, and S. Lehtola, Nuclear-electronic calculations need uncontracted basis sets on the quantum protons, arXiv:2503.03966
  • S. Lehtola and L. A. Burns, OpenOrbitalOptimizer—a reusable open source library for self-consistent field calculations, arXiv:2503.23034

Here is a list of my peer-reviewed scientific publications in inverse chronological order. Note that the first five (last on the list) are under my ex first name.

  1. S. Lehtola and M. Head-Gordon, Coupled-cluster pairing models for radicals with strong correlations, Mol. Phys., in press (2025). arXiv:2501.06422
  2. K. Nordlund, S. Lehtola, and G. Hobler, Repulsive interatomic potentials calculated at three levels of theory, Phys. Rev. A 111, 032818 (2025). arXiv:2501.06617 open access
  3. J. Kobus and S. Lehtola, Review of the finite difference Hartree–Fock method for atoms and diatomic molecules, and its implementation in the x2dhf program, Comput. Phys. Commun. 311, 109576 (2025). doi:10.1016/j.cpc.2025.109576 arXiv:2408.03679
  4. H. Åström and S. Lehtola, Systematic study of hard-wall confinement induced effects on atomic electronic structure, J. Phys. Chem. A 129, 2791 (2025). doi:10.1021/acs.jpca.4c05641 arXiv:2408.11595 open access cover feature
  5. S. Schwalbe, W. T. Schulze, K. Trepte, and S. Lehtola, Ensemble generalization of the Perdew–Zunger self-interaction correction: a way out of multiple minima and symmetry breaking, J. Chem. Theory Comput. 20, 7144 (2024). doi:10.1021/acs.jctc.4c00694 arXiv:2405.18394 open access
  6. V. Blum et al., Roadmap on methods and software for electronic structure based simulations in chemistry and materials, Electron. Struct. 6, 042501 (2024). doi:10.1088/2516-1075/ad48ec open access
  7. S. Lehtola, Importance profiles. Visualization of atomic basis set requirements, Electron. Struct. 6, 015015 (2024). doi:10.1088/2516-1075/ad31ca arXiv:2309.14844 open access
  8. H. Åström and S. Lehtola, Insight on Gaussian basis set truncation errors in weak to intermediate magnetic fields with an approximate Hamiltonian, J. Phys. Chem. A 127, 10872 (2023). doi:10.1021/acs.jpca.3c04531 arXiv:2307.02635 open access
  9. C. J. Schattenberg, A. Wodyński, H. Åström, D. Sundholm, M. Kaupp, and S. Lehtola, Revisiting gauge-independent kinetic energy densities in meta-GGAs and local hybrid calculations of magnetizabilities, J. Phys. Chem. A 127, 10896 (2023). doi:10.1021/acs.jpca.3c06244 arXiv:2306.13407 open access
  10. S. Lehtola, A call to arms: making the case for more reusable libraries, J. Chem. Phys. 159, 180901 (2023). doi:10.1063/5.0175165 arXiv:2309.02433
  11. T. B. Pedersen, S. Lehtola, I. F. Galván, and R. Lindh, The versatility of the Cholesky decomposition in electronic structure theory, Wiley Interdiscip. Rev. Comput. Mol. Sci. 14, e1962 (2023). doi:10.1002/wcms.1692 chemRxiv:2023-579sk-v4 open access
  12. S. Lehtola and M. A. L. Marques, Reproducibility of density functional approximations: how new functionals should be reported, J. Chem. Phys. 159, 114116 (2023). doi:10.1063/5.0167763 arXiv:2307.07474
  13. S. Lehtola, Automatic generation of accurate and cost-efficient auxiliary basis sets, J. Chem. Theory Comput. 19, 6242 (2023). doi:10.1021/acs.jctc.3c00670 arXiv:2306.11039 open access
  14. S. Lehtola, Accuracy of a recent regularized nuclear potential. J. Chem. Theory Comput. 19, 4033 (2023). doi:10.1021/acs.jctc.3c00530 arXiv:2302.09557 open access
  15. G. Li Manni et al., The OpenMolcas Web: a community-driven approach to advancing computational chemistry. J. Chem. Theory Comput. 19, 6933 (2023). doi:10.1021/acs.jctc.3c00182 chemRxiv:2023-b7f0j open access
  16. S. Lehtola, Atomic electronic structure calculations with Hermite interpolating polynomials. J. Phys. Chem. A 127, 4180 (2023). doi:10.1021/acs.jpca.3c00729 arXiv:2302.00440 open access
  17. S. Lehtola, Meta-GGA density functional calculations on atoms with spherically symmetric densities in the finite element formalism, J. Chem. Theory Comput. 19, 2502 (2023). doi:10.1021/acs.jctc.3c00183 arXiv:2302.06284 open access
  18. S. Pathak, I. E. López, A. J. Lee, W. P. Bricker, R. L. Fernández, S. Lehtola and J. A. Rackers, Accurate Hellmann–Feynman forces from density functional calculations with augmented Gaussian basis sets, J. Chem. Phys. 158, 014104 (2023). doi:10.1063/5.0130668 arXiv:2207.03587
  19. S. Lehtola and M. A. L. Marques, Many recent density functionals are numerically ill-behaved, J. Chem. Phys. 157, 174114 (2022). doi:10.1063/5.0121187 arXiv:2206.14062
  20. S. Schwalbe, K. Trepte, and S. Lehtola, How good are recent density functionals for ground and excited states of one-electron systems?, J. Chem. Phys. 157, 174113 (2022). doi:10.1063/5.0120515 arXiv:2208.06482 open access
  21. V.-T. Salo, R. Valiev, S. Lehtola, and T. Kurtén, Gas-phase peroxyl radical recombination reactions: a computational study of formation and decomposition of tetroxides, J. Phys. Chem. A 126, 4046 (2022). doi:10.1021/acs.jpca.2c01321
  22. S. Lehtola and A. Karttunen, Free and open source software for computational chemistry education, Wiley Interdiscip. Rev. Comput. Mol. Sci. 12, e1610 (2022). doi:10.1002/wcms.1610 chemRxiv:2021-hr1r0-v3 open access (top downloaded article in 2022)
  23. M. F. Kasim, S. Lehtola, and S. M. Vinko, DQC: a Python program package for Differentiable Quantum Chemistry, J. Chem. Phys. 156, 084801 (2022). doi:10.1063/5.0076202 arXiv:2110.11678 open access
  24. K. Trepte, S. Schwalbe, S. Liebing, W. T. Schulze, J. Kortus, H. Myneni, A. V. Ivanov, and S. Lehtola, Chemical bonding theories as guides for self-interaction corrected solutions: multiple local minima and symmetry breaking, J. Chem. Phys. 155, 224109 (2021). doi:10.1063/5.0071796 arXiv:2109.08199 open access
  25. S. Lehtola, Straightforward and accurate automatic auxiliary basis set generation for molecular calculations with atomic orbital basis sets, J. Chem. Theory Comput. 17, 6886 (2021). doi:10.1021/acs.jctc.1c00607 arXiv:2106.11081
  26. E. Epifanovsky et al., Software for the frontiers of quantum chemistry: An overview of developments in the Q-Chem 5 package, J. Chem. Phys. 155, 084801 (2021). doi:10.1063/5.0055522 open access
  27. G. Bilalbegović, A. Maksimović, L. A. Valencic, and S. Lehtola, Sulfur molecules in space by X-rays: a computational study, ACS Earth Space Chem. 5, 436 (2021). doi:10.1021/acsearthspacechem.0c00238 open access
  28. R. K. Jinger, H. Fliegl, R. Bast, M. Dimitrova, S. Lehtola, and D. Sundholm, Spatial contributions to nuclear magnetic shieldings, J. Phys. Chem. A 125, 1778 (2021). doi:10.1021/acs.jpca.0c10884 arXiv:2012.03048 open access
  29. S. Lehtola, M. Dimitrova, H. Fliegl, and D. Sundholm, Benchmarking magnetizabilities with recent density functionals, J. Chem. Theory Comput. 17, 1457 (2021). doi:10.1021/acs.jctc.0c01190 arXiv:2011.06560 open access Erratum
  30. S. Lehtola and M. A. L. Marques, Meta-local density functionals: a new rung on Jacob’s ladder, J. Chem. Theory Comput. 17, 943 (2021). doi:10.1021/acs.jctc.0c01147. arXiv:2006.16835 open access
  31. S. Schwalbe, L. Fiedler, J. Kraus, J. Kortus, K. Trepte, and S. Lehtola, PyFLOSIC: Python-based Fermi–Löwdin orbital self-interaction correction, J. Chem. Phys. 153, 084104 (2020). doi:10.1063/5.0012519. arXiv:1905.02631
  32. Q. Sun, X. Zhang, S. Banerjee, P. Bao, M. Barbry, N. S. Blunt, N. A. Bogdanov, G. H. Booth, J. Chen, Z.-H. Cui, J. J. Eriksen, Y. Gao, S. Guo, J. Hermann, M. R. Hermes, K. Koh, P. Koval, S. Lehtola, Z. Li, J. Liu, N. Mardirossian, J. D. McClain, M. Motta, B. Mussard, H. Q. Pham, A. Pulkin, W. Purwanto, P. J. Robinson, E. Ronca, E. Sayfutyarova, M. Scheurer, H. F. Schurkus, J. E. T. Smith, C. Sun, S.-N. Sun, S. Upadhyay, L. K. Wagner, X. Wang, A. White, J. D. Whitfield, M. J. Williamson, S. Wouters, J. Yang, J. M. Yu, T. Zhu, T. C. Berkelbach, S. Sharma, A. Sokolov, and G. K.-L. Chan, Recent developments in the PySCF program package, J. Chem. Phys. 153, 024109 (2020). doi:10.1063/5.0006074. arXiv:2002.12531
  33. D. G. A. Smith, L. A. Burns, A. C. Simmonett, R. M. Parrish, M. C. Schieber, R. Galvelis, P. Kraus, H. Kruse, R. Di Remigio, A. Alenaizan, A. M. James, S. Lehtola, J. P. Misiewicz, M. Scheurer, R. A. Shaw, J. B. Schriber, Y. Xie, Z. L. Glick, D. A. Sirianni, J. S. O’Brien, J. M. Waldrop, A. Kumar, E. G. Hohenstein, B. P. Pritchard, B. R. Brooks, H. F. Schaefer III, A. Yu. Sokolov, K. Patkowski, A. E. DePrince III, U. Bozkaya, R. A. King, F. A. Evangelista, J. M. Turney, T. D. Crawford, and C. D. Sherrill, Psi4 1.4: Open-Source Software for High-Throughput Quantum Chemistry, J. Chem. Phys. 152, 184108 (2020). doi:10.1063/5.0006002 chemrXiv:11930031
  34. S. Lehtola, L. Visscher, and E. Engel, Efficient implementation of the superposition of atomic potentials initial guess for electronic structure calculations in Gaussian basis sets, J. Chem. Phys. 152, 144105 (2020). doi:10.1063/5.0004046 arXiv:2002.02587
  35. S. Lehtola, Polarized Gaussian basis sets from one-electron ions, J. Chem. Phys. 152, 134108 (2020). doi:10.1063/1.5144964 arXiv:2001.04224
  36. D. S. Levine, D. Hait, N. M. Tubman, S. Lehtola, K. B. Whaley, and M. Head-Gordon, CASSCF with extremely large active spaces using the adaptive sampling configuration interaction method, J. Chem. Theory Comput. 16, 2340 (2020). doi:10.1021/acs.jctc.9b01255 arXiv:1912.08379
  37. S. Lehtola, F. Blockhuys, and C. Van Alsenoy, An overview of self-consistent field calculations within finite basis sets, Molecules 25, 1218 (2020). doi:10.3390/molecules25051218 arXiv:1912.12029 open access
  38. S. Lehtola, Accurate reproduction of strongly repulsive interatomic potentials, Phys. Rev. A 101, 032504 (2020). doi:10.1103/PhysRevA.101.032504 arXiv:1912.12624
  39. S. Lehtola, Fully numerical calculations on atoms with fractional occupations and range-separated exchange functionals, Phys. Rev. A 101, 012516 (2020). doi:10.1103/PhysRevA.101.012516 arXiv:1908.02528
  40. S. Lehtola, Curing basis set overcompleteness with pivoted Cholesky decompositions, J. Chem. Phys. 151, 241102 (2019). doi:10.1063/1.5139948 arXiv:1911.10372
  41. S. Lehtola, A review on non-relativistic fully numerical electronic structure calculations on atoms and diatomic molecules, Int. J. Quantum Chem. 119, e25968 (2019). doi:10.1002/qua.25968 arXiv:1902.01431 open access, cover feature
  42. C. Shahi, P. Bhattarai, K. Wagle, B. Santra, S. Schwalbe, T. Hahn, J. Kortus, K. A. Jackson, J. E. Peralta, K. Trepte, S. Lehtola, N. K. Nepal, H. Myneni, B. Neupane, S. Adhikari, A. Ruzsinszky, Y. Yamamoto, T. Baruah, R. R. Zope, and J. P. Perdew, Stretched or noded orbital densities and self-interaction correction in density functional theory, J. Chem. Phys. 150, 174102 (2019). doi:10.1063/1.5087065 arXiv:1903.00611
  43. S. Lehtola, M. Dimitrova, and D. Sundholm, Fully numerical electronic structure calculations on diatomic molecules in weak to strong magnetic fields, Mol. Phys. 118, e1597989 (2020), doi:10.1080/00268976.2019.1597989 arXiv:1812.06274
  44. S. Lehtola, Fully numerical Hartree–Fock and density functional calculations. II. Diatomic molecules, Int. J. Quantum Chem. 119, e25944 (2019). doi:10.1002/qua.25944 arXiv:1810.11653, cover feature
  45. S. Lehtola, Fully numerical Hartree–Fock and density functional calculations. I. Atoms, Int. J. Quantum Chem. 119, e25945 (2019). doi:10.1002/qua.25945 arXiv:1810.11651, cover feature
  46. S. Lehtola, Assessment of initial guesses for self-consistent field calculations. Superposition of Atomic Potentials: simple yet efficient, J. Chem. Theory Comput. 15, 1593 (2019). doi:10.1021/acs.jctc.8b01089. arXiv:1810.11659 open access
  47. S. Lehtola, C. Steigemann, M. J. T. Oliveira, and M. A. L. Marques, Recent developments in LIBXC — a comprehensive library of functionals for density functional theory, SoftwareX 7, 1 (2018). doi:10.1016/j.softx.2017.11.002 open access
  48. S. Lehtola, N. M. Tubman, K. B. Whaley, and M. Head-Gordon, Cluster decomposition of full configuration interaction wave functions: a tool for chemical interpretation of systems with strong correlation, J. Chem. Phys. 147, 154105 (2017). doi:10.1063/1.4996044 arXiv:1707.04376
  49. S. Lehtola, J. Parkhill, and M. Head-Gordon, Orbital optimization in the perfect pairing hierarchy. Applications to full-valence calculations on linear polyacenes, Mol. Phys. 116, 547 (2018), doi:10.1080/00268976.2017.1342009 arXiv:1705.01678
  50. E. Ö. Jónsson, S. Lehtola, M. Puska, and H. Jónsson, Theory and applications of generalized Pipek–Mezey Wannier functions, J. Chem. Theory Comput. 13, 460 (2017). doi:10.1021/acs.jctc.6b00809 arXiv:1608.06396
  51. S. Lehtola, J. Parkhill, and M. Head-Gordon, Cost-effective description of strong correlation: efficient implementations of the perfect quadruples and perfect hextuples models, J. Chem. Phys. 145, 134110 (2016). doi:10.1063/1.4964317 arXiv:1609.00077
  52. S. Lehtola, E. Ö. Jónsson, and H. Jónsson, The effect of complex-valued optimal orbitals on atomization energies with the Perdew–Zunger self-interaction correction to density functional theory, J. Chem. Theory Comput. 12, 4296 (2016). doi:10.1021/acs.jctc.6b00622 Computational Chemistry Highlight
  53. S. Lehtola, M. Head-Gordon, and H. Jónsson, Complex orbitals, multiple local minima and symmetry breaking in Perdew–Zunger self-interaction corrected density-functional theory calculations, J. Chem. Theory Comput. 12, 3195 (2016). doi:10.1021/acs.jctc.6b00347
  54. E. Ö. Jónsson, S. Lehtola, and H. Jónsson, Towards an optimal gradient-dependent energy functional of the PZ-SIC form, Proc. Comput. Sci 51, 1858 (2015). doi:10.1016/j.procs.2015.05.417
  55. J. Niskanen, C. Sahle, I. Juurinen, J. Koskelo, S. Lehtola, R. Verbeni, H. Müller, M. Hakala, and S. Huotari, Protonation dynamics and hydrogen bonding in aqueuos sulfuric acid, J. Phys. Chem. B 119, 11732 (2015). doi:10.1021/acs.jpcb.5b04371
  56. T. P. Rossi, S. Lehtola, A. Sakko, M. J. Puska, and R. M. Nieminen, Nanoplasmonics simulations at the basis set limit through completeness-optimized, local numerical basis sets, J. Chem. Phys. 142, 094114 (2015). doi:10.1063/1.4913739
  57. S. Lehtola, Automatic algorithms for completeness-optimization of Gaussian basis sets, J. Comput. Chem. 36, 335 (2015). doi:10.1002/jcc.23802
  58. J. Koskelo, I. Juurinen, K. Ruotsalainen, M. McGrath, I.-F. Kuo, S. Lehtola, S. Galambosi, K. Hämäläinen, S. Huotari, and M. Hakala, Intra- and intermolecular effects on the Compton profile of the ionic liquid 1,3-dimethylimidazolium chloride, J. Chem. Phys. 141, 244505 (2014). doi:10.1063/1.4904278
  59. S. Lehtola and H. Jónsson, Variational, self-consistent implementation of the Perdew–Zunger self-interaction correction with complex optimal orbitals, J. Chem. Theory Comput. 10, 5324 (2014). doi:10.1021/ct500637x Erratum I Erratum II
  60. S. Lehtola and H. Jónsson, Pipek–Mezey orbital localization using various partial charge estimates, J. Chem. Theory Comput. 10, 642 (2014). doi:10.1021/ct401016x
  61. S. Lehtola and H. Jónsson, Unitary optimization of localized molecular orbitals, J. Chem. Theory Comput. 9, 5365 (2013). doi:10.1021/ct400793q
  62. C. J. Sahle, C. Sternemann, C. Schmidt, S. Lehtola, S. Jahn, L. Simonelli, S. Huotari, M. Hakala, T. Pylkkänen, A. Nyrow, K. Mende, M. Tolan, K. Hämäläinen, and M. Wilke, Microscopic structure of water at elevated pressures and temperatures, Proc. Nat. Acad. Sciences 110, 6301 (2013). doi:10.1073/pnas.1220301110
  63. S. Lehtola, P. Manninen, M. Hakala, and K. Hämäläinen, Contraction of completeness-optimized basis sets. Application to ground-state electron momentum densities, J. Chem. Phys. 138, 044109 (2013). doi:10.1063/1.4788635
  64. J. Lehtola, P. Manninen, M. Hakala, and K. Hämäläinen, Completeness-optimized basis sets. Application to ground-state electron momentum densities, J. Chem. Phys. 137, 104105 (2012). doi:10.1063/1.4749272
  65. J. Lehtola, M. Hakala, A. Sakko, and K. Hämäläinen, ERKALE — a flexible program package for x-ray properties of atoms and molecules, J. Comput. Chem. 33, 1572 (2012). doi:10.1002/jcc.22987
  66. J. Lehtola, M. Hakala, J. Vaara, and K. Hämäläinen, Calculation of isotropic Compton profiles with Gaussian basis sets, Phys. Chem. Chem. Phys. 13, 5630 (2011). doi:10.1039/C0CP02269A cover article
  67. T. Pylkkänen, J. Lehtola, M. Hakala, A. Sakko, G. Monaco, S. Huotari, and K. Hämäläinen, Universal signature of hydrogen bonding in the oxygen K-edge spectrum of alcohols, J. Phys. Chem. B 114, 13076 (2010). doi:10.1021/jp106479a
  68. J. Lehtola, M. Hakala, and K. Hämäläinen, Structure of liquid linear alcohols, J. Phys. Chem. B 114, 6426 (2010). doi:10.1021/jp909894y

My PhD thesis can be found here: Computational modeling of the electron momentum density.

Cover graphics by Jyrki Hokkanen (CSC - IT Center for Science Ltd).